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Abstract The transient fin model introduced recently for determination of the
in-plane thermal diffusivity of planar samples with the help of infrared thermogra-
phy was modified so as to be applicable to poor heat conductors. The new model now
includes a temperature-dependent heat loss by convective heat transfer, suitable for an
experimental setup in which the sample is aligned parallel to a weak, forced air flow
stabilizing otherwise the convective heat transfer. The temperature field in the sam-
ple was measured with an infrared camera while the sample was heated at one edge.
The symmetric temperature field created was averaged over the central fifth of the
sample to obtain one-dimensional temperature profiles, both transient and stationary,
which were fitted by a numerical solution of the fin model. One of the fitting parame-
ters was the thermal diffusivity, and with a known density and specific heat capacity,
the thermal conductivity was thus determined. The test measurements with tantalum
samples gave the result (57.5 ± 0.2)W · m−1 · K−1 in excellent agreement with the
known value. The other fitting parameter was a temperature-dependent heat loss coeffi-
cient from which the lower limit for the temperature-dependent convection coefficient
was determined. For the stationary state the result was (1.0 ± 0.2)W · m−2 · K−1 at
the temperature of the flowing air, and its temperature dependence was found to be
(0.22 ± 0.01) W · m−2 · K−2.
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1 Introduction

The thermal diffusivity of a homogeneous planar sample can be measured with, e.g.,
the flash method [1], for a recent review, see [2], also in the in-plane direction by using
an infrared (IR) camera [3]. There are also other methods that utilize infrared thermog-
raphy, but the heating of the sample is done differently than in the flash method [4,5].
The convective heat transfer from the sample is taken into account in the latter two
methods, and the related heat-transfer coefficient can be determined simultaneously
with the thermal-diffusion coefficient.

We referred above to a method that we have previously introduced for determining
the in-plane thermal-diffusion coefficient in planar geometry [5]. The method was
based on heating a thin planar sample at one end and measuring both the transient and
stationary temperature fields in the sample using an IR camera, while introducing at
the same time a weak forced flow of air around the sample to stabilize the convective
heat transfer from it (see Fig. 1). Since the temperature field was symmetric around the
center line of the plate, and the effect of sample edges did not penetrate too far into the
sample, we considered the average temperature profile of the central fifth of the plate
in the longitudinal direction, and fitted it by the solution of a one-dimensional transient
fin model with the thermal diffusion and an effective heat-loss coefficient as the fitting
parameters. With a known density and specific heat capacity of the sample, its thermal
conductivity could thus be determined. We validated the method by measurements on
copper and aluminum samples.

Copper and aluminum are very good conductors of heat, and a natural exten-
sion of the method would be to moderately or even poorly conducting materials.
To this end, we had to analyze in more detail effects of specific features in the
experimental setup. For a relatively poorly conducting sample material, we chose
tantalum as its thermal-diffusion coefficient is constant over a wide temperature
range around room temperature. It became evident that the two-dimensional tem-
perature field in tantalum samples was not symmetric (see Fig. 2), as in copper
and aluminum samples. The reason for this asymmetry was traced to the align-
ment of the sample perpendicular to the weak flow of air used. The velocity bound-
ary layer that forms on the plate surface grows along the flow direction. The flow
velocity is the largest at the lower edge of the plate, and there the convective
heat transfer is stronger than at the upper (trailing) edge. For poor heat conductors
this obviously leads to an asymmetric temperature field. A simple remedy to this
problem was to place the sample parallel to the upward-going air flow with the heated
edge up. The heater was placed up because of practical reasons and because then
the additional natural convection caused by heating does not interfere too much with
the measurement. This setup indeed resulted in a symmetric temperature field, and a
one-dimensional temperature profile could again be determined by averaging over a
narrow strip around the center line of the sample.

The change in the sample alignment led, however, to a problem with the previously
introduced transient fin model. It had been assumed in the model that the heat transfer
by convection would be constant in the direction in which the temperature profile was
averaged. Now that air was flowing parallel to the gradient of the temperature profile,
this assumption was no longer valid: the velocity and thermal boundary layers were
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Fig. 1 The principle of our previous experimental method for determining the in-plane thermal diffusivity
[5]. The planar sample was heated at one edge while a slow air flow was introduced around the plate. The
resulting symmetric temperature field was averaged over the central fifth of the plate in the longitudinal
(horizontal) direction. The resulting one-dimensional temperature profile (lower panel) was then fitted by
a fin model
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Fig. 2 Isotherms of a stationary temperature field measured on the 0.3 mm thick tantalum sample. The
direction of the air flow is indicated. The temperature field does not remain symmetric with respect to the
center line in the x direction of the sample
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increased towards the hot end of the sample, and, consequently, the convective heat-
transfer coefficient was also changing. The position dependence of this coefficient had
thus to be taken into account, and we modeled the effect by introducing a tempera-
ture-dependent coefficient. This meant that the transient fin model became nonlinear,
and a new solution to it had to be found.

2 Experimental Method

The experimental setup is described in detail in Ref. [5] apart from the change in the
sample alignment. A planar, rectangular (approximately 100 mm × 50 mm) sample
initially at room temperature is placed this time vertically in a weak flow of air and
heated on the upper end. As before, the purpose of the air flow on both sides of the
sample is to stabilize the convective heat transfer. The heating of the upper end of
the sample was done by pressing the edge between two hot plates heated by resistors.
The temperature evolution of the whole sample was recorded by using an IR camera.
For a reliable reading of temperature the emittance of the sample was improved by
painting it thinly on both sides with a black spray paint. The IR camera was calibrated
for each sample by attaching a thermocouple on the sample surface and measuring the
temperature of that point also with the IR camera in the temperature range relevant
for the measurements. The possible effect of the paint on the surface temperature of
the sample was automatically taken into account by this kind of calibration, and it was
not necessary to determine the actual emittance of the sample.

The measured temperature field was averaged as before over the central fifth of the
sample so as to obtain a one-dimensional temperature profile along the sample. The
time evolution of this profile was then fitted by a solution to the transient fin model
with three parameters. The thermal diffusivity is an obvious parameter, and the other
two parameters are related to an effective heat-loss coefficient due to convective and
radiative heat losses. We previously [5] assumed a constant heat-loss coefficient, but
in the present experimental setup we include a linear temperature dependence in this
coefficient as described in the following section.

We used two high-purity tantalum plates with known thermal properties (see
Table 1) to study the (rather low) thermal diffusivity and the temperature-dependent
heat-loss coefficient. The thicknesses of the plates were 0.3 mm and 1.5 mm. They
were painted black on both sides. The thicker plate was calibrated so that the tem-
perature measured by the IR camera was corrected to the real surface temperature of
the plate as measured by a thermocouple. The calibration curve shown in Fig. 3 was
used also for the thinner sample as it was painted with the same paint as the 1.5 mm
sample, and the surface finishes of the samples were similar.

Table 1 Thermophysical properties of tantalum at 300 K [7]

Sample ρ
(

kg · m−3
)

cp

(
J · kg−1 · K−1

)
k

(
W · m−1 · K−1

)
α

(
m2 · s−1

)

Ta 16,600 140 57.5 24.7 × 10−6
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Fig. 3 The temperature calibration curve for the 1.5 mm thick tantalum plate. The apparent temperature
was measured by an IR camera and the read surface temperature by a thermocouple

The IR camera images were saved at a rate of 25 frames per second. The one-
dimensional temperature profiles were obtained by taking averages over the central
fifths of the plates. Furthermore, the stationary measurement data were time averaged
over all saved frames in the stationary regime. Next the temperature data were cor-
rected by the calibration curve. Finally the profile data were smoothed by taking a
moving average over a small position window (9 pixels, about 3 mm). In the transient
measurements the time evolution of the temperature profile was also smoothed by a
moving average over 5 frames, i.e., over 0.2 s.

3 Mathematical Model

As before [5], we restrict our consideration to a narrow strip around the center line of
the sample plate, and use a one-dimensional transient fin model to describe the system,

ρcp
∂T

∂t
= ∂

∂x

(
k
∂T

∂x

)
− 2h

a
(T − T∞) − 2εσ

a
(T 4 − T 4∞). (1)

Here T = T (x, t) is the (average) temperature profile of the plate with x the distance
from its heated edge, and T∞ is the temperature of the air and the surroundings. The
density, ρ, the specific heat capacity, cp , and the thermal conductivity, k, of the material
can to good accuracy be assumed to be constants for tantalum. The thickness of the
plate, a, and the emissivity, ε, are also constants. σ is the Stefan–Boltzmann constant,
and h is the (position-dependent) convective heat-transfer coefficient, h = h(x).
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The temperature of the plate in a stationary situation is thus described by the equa-
tion,

k
d2T

dx2 − 2

a
h(x)(T − T∞) − 2εσ

a
(T 4 − T 4∞) = 0 (2)

with the boundary conditions,

{
T (0) = T0

k dT
dx

(L) + h(L) (T (L) − T∞) + εσ
(
T (L)4 − T 4∞

) = 0,
(3)

where L is the length of the plate. The convective heat-transfer coefficient h depends
on x because of the boundary-layer effects on the air flow across the plate. The func-
tional dependence h = h(x) is a priori unknown, and cannot be solved by standard
methods applied [7] in the case of a homogeneous temperature in the sample plate
(in which case one finds h(x) ∝ x−1/2; we have also checked that experimental data
are not consistent with this kind of position dependence in h(x)). We can, however,
circumvent this problem as the temperature profile T = T (x) is a monotonic func-
tion, and we thus have a one-to-one correspondence between x and T, or rather x and
� := T − T∞. This means that we can also consider x as a function of �, x = x(�).
We can thus express Eq. 2 in the form,

k
d2T

dx2 − 2

a
h(�)(T − T∞) − 2εσ

a
(T 4 − T 4∞) = 0 (4)

with an unknown function h = h(�). Since the temperature range in the plate is quite
narrow, we can also replace h(�) by its first-order approximation,

h(�) = h0 + h1�, (5)

where h0 and h1 are, in principle, functions of T∞. Variation of T∞ is, however, so
small in the experiments that they can be considered here as constants. This kind of
approach has also been used before [6].

Using consistently the notation � = T − T∞ and substituting the expression Eq. 5
into Eq. 4, expanding the term T 4 − T 4∞ as a Taylor series with respect to T − T∞,
and retaining only its first two terms, Eq. 4 becomes

α
d2�

dx2 − 2

a

h0 + 4εσ T 3∞ + (
h1 + 6εσ T 2∞

)
�

ρcp
� = 0. (6)

Here α = k/(ρcp) is the thermal-diffusion coefficient, and we can define

η := η(�) = η0 + η1� = h0 + 4εσ T 3∞
ρcp

+ h1 + 6εσ T 2∞
ρcp

� (7)
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as an effective temperature-dependent heat-loss coefficient that includes both convec-
tive and radiative heat transfer. With this notation, the stationary temperature profile
of the plate is determined by

α
d2�

dx2 − 2

a
(η0 + η1�) � = 0. (8)

The boundary conditions are now

{
�(0) = �0

α d�

dx
(L) + (η0 + η1�(L)) �(L) = 0.

(9)

This boundary-value problem can most easily be solved numerically (an analytical
solution exists in terms of elliptic functions, but it is not convenient numerically).
We used Matlab and its built-in differential-equation-solver functions to obtain the
numerical solution. The two unknown coefficients, η0/α and η1/α, can be determined
by minimizing the integral,

x2∫

x1

(
�(η0/α,η1/α)(x) − �̄(x)

)2
dx (10)

with respect to η0/α and η1/α. Here �(η0/α,η1/α) is a solution to the boundary-value
problem, Eq. 8 with Eq. 9, and �̄ is the measured stationary temperature profile.

The time-dependent case, Eq. 1, can also be written in a similar form,

∂�

∂t
= α

∂2�

∂x2 − 2 (η0 + η1�)

a
�. (11)

Notice that Eq. 11 is a nonlinear partial-differential equation. In the experiments one
edge of the plate is heated and the time dependence of the edge temperature, �(0, t),
is measured. At the opposite edge we have convective and radiative heat transfer. So,
in Eq. 11, we impose the initial and boundary conditions,

⎧
⎨
⎩

�(x, 0) = f (x),

�(0, t) = �0(t),
α ∂�

∂x (L , t) + (η0 + η1�(L , t))�(L , t) = 0.

(12)

The initial temperature profile f(x) and the time-dependent edge temperature �0(t)
are known (measured) functions.

Once the parameters η0/α and η1/α are extracted from the stationary temperature
profile, we can solve numerically the transient case, Eq. 11 with Eq. 12, using Mat-
lab’s function called pdepe. Now there is, in principle, only one independent unknown
parameter left, the thermal diffusivity, α. But, as carried out previously [5], we search
for an optimal solution to the transient problem by letting the η0/α value obtained
from the stationary data vary around the stationary value, and have thereby two fitting
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parameters also in the transient case, α and η0/α. Only the parameter η1/α is taken
as such from the stationary case. Variation of η1/α would be a higher-order effect.

Our experimental data were thus analyzed in the following way. Two-dimensional
optimization with respect to parameters, η0/α and η1/α, was performed for the steady-
state temperature profile, Eq. 10, as described above. Thereafter, a two-dimensional
optimization by minimizing

x2∫

x1

⎛
⎝

t2∫

t1

(
�(α,η0/α)(x, t) − �̄(x, t)

)2
dt

⎞
⎠ dx (13)

for the time-dependent temperature profiles �(x, t) was performed with respect to
α and η0/α. The minimum value of Eq. 13 was searched in the vicinity of the η0/α

value obtained for the steady-state profile.
Finally, the convection coefficient h0 at the reference temperature T∞ and the tem-

perature dependence h1 (see Eq. 5) can be solved from Eq. 7:

h0 = k
η0

α
− 4εσ T 3∞

h1 = k
η1

α
− 6εσ T 2∞. (14)

All the parameters of Eq. 14 are now known from the fitted measurement data
(k = αρcp) except the emittance ε that we did not determine. However, by using its
maximum value of 1.0, we can obtain lower limits for h0 and h1.

4 Sensitivity Analysis

It turned out that in transient measurements the temperature rise in the 0.3 mm thick
tantalum plate was too small to reliably determine the location of the minimum of the
cost function of Eq. 13 in the two-dimensional parameter space. It also became clear
that changes in the temperature profile of the 1.5 mm thick sample were too small in
the stationary state for optimization by Eq. 10. For these reasons we measured and
analyzed only the stationary temperature profile in the 0.3 mm thick sample and the
transient temperature profile in the 1.5 mm thick sample.

The same conclusion can also be made based on a sensitivity analysis (see, e.g.,
[6]) of the heat equation with respect to the fitting parameters. The stationary case,
Eq. 8, can be written in the form,

d2�

dx2 − 2

a
(β1 + β2�) � = 0, (15)
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Fig. 4 Left panel: reduced sensitivity coefficients X∗
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thicknesses of 0.3 mm (solid line) and 1.5 mm (dotted line). Right panel: ratio X∗

1/X∗
2 for the two sample
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where we have denoted our two fitting parameters by β1 = η0/α and β2 = η1/α. The
boundary conditions, Eq. 9, become now

{
�(0) = �0
d�

dx
(L) + (β1 + β2�(L)) �(L) = 0.

(16)

Reduced sensitivity coefficients can be defined such that [6]

X∗
1 = β1

∂�

∂β1
and X∗

2 = β2
∂�

∂β2
. (17)

These coefficients were determined numerically, and are shown as a function of
x in the left panel of Fig. 4. The ratio X∗

1/X∗
2 is plotted in the right panel. We used

typical measurement values (see Sect. 5 ): �0 = 15 K, L = 0.07 m, β1 = 0.13 m−1,
and β2 = 0.0044 m−1 · K−1. Results are shown for two sample thicknesses, a = 0.3
mm and a = 1.5 mm. It is evident from the ratio X∗

1/X∗
2 that parameters β1 and β2

are not dependent for the thinner sample. Furthermore, the sensitivity of the method
to β2 is weaker than to β1, but not too weak to prevent estimation of this coefficient
with appropriate precision. For the thicker sample, the ratio X∗

1/X∗
2 is nearly constant

throughout the sample, and the fitting parameters are thus not independent. Therefore,
in the following, if both parameters β1 and β2 are determined from stationary data, it
is done only for the thinner sample.

5 Results

A stationary temperature field in the 0.3 mm thick tantalum plate is shown in Fig. 5.
Isothermal contours show clearly the symmetry of the field, and the window in the
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Fig. 5 Isotherms of a stationary
temperature field measured on
the 0.3 mm thick tantalum
sample. The direction of the air
flow is indicated. The field was
obtained by time averaging over
all saved infrared camera frames
in the stationary regime. The
vertical lines border the window
in which the mean temperature
profile in the x direction was
determined. The short horizontal
lines indicate the interval in the x
direction in which the
temperature profile of Fig. 6 was
fitted by the stationary fin model
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vertical direction (x axis), in which the temperature is averaged over the y direction,
is marked by straight lines. The resulting mean temperature profile in the x direc-
tion is shown in Fig. 6 together with the best theoretical fit based on Eqs. 8–10. The
fitted interval in the x direction is indicated by short horizontal lines in Fig. 5, i.e.,
10- mm-long intervals at both edges were left out of the fit. The inset in Fig. 6 shows
the difference between the data and the fit in more detail. For comparison the cor-
responding difference is also shown for a linear transient fin model (the one used in
Ref. [5]) where the convective heat-transfer coefficient does not depend on tempera-
ture. It is evident that the model with the temperature-dependent coefficient provides
a better fit. For this particular measurement the parameters that gave the best fit were
η0/α = 0.10693 m−1 and η1/α = 0.00503 m−1 · K−1, as indicated by the contour
lines of the cost function, Eq. 10, shown in Fig. 7.

The fitted results for all the stationary temperature data measured are listed in
Table 2. The same results are shown graphically in Fig. 8, where the ratio of the
effective heat-loss coefficient (see Eq. 7) to thermal diffusivity is plotted as a function
of temperature. Each line corresponds to a result measured in the temperature range
given by the end points of the line. The lengths and positions of the lines are thus
variable. From Table 2 the averaged final results for the two fitting parameters are
η0/α = (0.121 ± 0.003) m−1 and η1/α = (0.0044 ± 0.0002) m−1 · K−1. The error
estimates are based on the standard deviation of the mean. The value for the temper-
ature-dependent part of the effective heat-loss coefficient, η1/α, was used later in the
numerical solution of the transient fin model.

Time-dependent temperature profiles from a single measurement in the 1.5 mm
thick tantalum plate are shown in Fig. 9 with 12 s intervals. Also plotted in this figure
is the best fit by a numerical solution of the transient fin model, Eq. 11, with Eq. 12. As
in the stationary case, the last 10 mm of the experimental temperature profile data were
left out when optimizing the cost function, Eq. 13. Since the differences between the
experimental and numerical data were so small, they are shown separately in Fig. 10.
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Fig. 6 The stationary temperature profile from the data of Fig. 5 (dots) corrected by the calibration curve
(Fig. 3) and smoothed by a nine-point moving average. The ambient temperature T∞ = 297.8 K has been
subtracted. Note that the first 10 mm interval in the x direction of Fig. 5 is omitted, and the origin has
been shifted accordingly. The solid line represents the best fit by numerically solving the stationary fin
model, Eqs. 8–10. The last 10 mm interval of the measured profile was not used in the optimization. The
differences between the data and the fit are shown in the inset for two different fin models. The dashed
line is the result for our earlier model [5] while the solid line is the result for the present fin model with a
temperature-dependent convection coefficient

Fig. 7 Contour lines of the cost function, Eq. 10, for the stationary temperature profile of Fig. 6. The best fit
is provided by the parameter values, η0/α = 0.10693 m−1 and η1/α = 0.00503 m−1 · K−1. The location
of the minimum is marked by a small circle. The value of the cost function on the innermost contour line
is 3 % larger than the minimum value; on the second contour line, it is 13 % larger; and thereafter, lines
indicate an additional 10 % unit increase in the value
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Table 2 Fitted parameter values
for the stationary temperature
measurements on the 0.3 mm
thick tantalum sample, and
measured temperature
of air flow

Measurement η0/α
(

m−1
)

η1/α
(

m−1 · K−1
)

T∞(K)

1 0.11869 0.00501 298.7

2 0.12033 0.00398 298.5

3 0.12262 0.00402 298.4

4 0.11360 0.00462 298.6

5 0.11708 0.00442 298.7

6 0.12083 0.00422 298.6

7 0.13123 0.00417 297.9

8 0.13829 0.00357 298.1

9 0.12366 0.00505 298.2

10 0.10693 0.00503 297.8

Average 0.12133 0.004409

2 4 6 8 10 12 14 16
0.12

0.13
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0.15

0.16

0.17
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0.2

0.21

T − T∞, K

η 
/ α

, m
−

1

Fig. 8 Results of Table 2 in a graphical form, i.e., η(T − T∞)/α = η0/α + η1(T − T∞)/α as a function
of temperature for each individual measurement

They are of the order of 0.1 K at maximum, which is also the accuracy of the IR
camera.

The cost function, Eq. 13, together with contour lines are shown in Fig. 11 for the
transient temperature data of Fig. 9. In the cost function the parameters were α and
η0/α, but we actually used the thermal conductivity k as a fitting parameter instead of
the thermal-diffusion coefficient α, using the known values for the density and specific
heat capacity of the tantalum shown also in Table 1. The increments in the parameter
values used in the optimization were 0.1 W · m−1 · K−1 for the thermal conductivity
and 0.0001m−1 for the parameter η0/α. The fitted results for all transient-measure-
ment parameters are collected in Table 3. According to our measurements, the thermal
conductivity of tantalum is k = (57.5 ± 0.2) W · m−1 · K−1, which is in excellent
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Fig. 9 Transient temperature profiles in the 1.5 mm thick tantalum plate at 12 s intervals together with the
best fit by a numerical solution of the transient fin model, Eq. 11, with Eq. 12. The last 10 mm interval of
the measured profile was not used in the optimization

Fig. 10 Difference between the best fit and the measured data of Fig. 9 within the optimization region

agreement with the generally accepted value in the literature, 57.5 W · m−1 · K−1,
while its thermal diffusivity is α = (24.74 ± 0.08) × 10−6m2 · s−1. The parameter
η0/α = (0.158 ± 0.003) m−1 was 31 % greater than the value obtained from the
stationary measurements, and reasons for this difference are discussed in the next
section.

Now that we have estimates for the parameters k, η0/α, and η1/α, the lower lim-
its for the components of the temperature-dependent convection coefficient h(�) =
h0 + h1� can be calculated from Eq. 14 by using the maximal emittance ε = 1.0.
For the stationary temperature-field measurements of Table 2, the average values are
h0 = (1.0 ± 0.2) W · m−2 · K−1 and h1 = (0.22 ± 0.01) W · m−2 · K−2. The error
limits were taken as the standard deviations of the means. For a typical emittance of 0.8
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Fig. 11 The cost function, Eq. 13, together with its equal-value contour lines for the transient temperature
profiles of Fig. 9. The minimum of the function is indicated by a small circle. The value of the cost function
on the innermost contour line is 1 % larger than the minimum value, and subsequent contour lines are drawn
at 5 % unit increments in the value

Table 3 Fitted parameter values for the transient measurements on the 1.5 mm thick tantalum sample. The
values for thermal diffusivity α are related to those of thermal conductivity k by using known values for
the density and specific heat capacity of tantalum (Table 1). The measured air flow temperatures are also
tabulated

Measurement k
(

W · m−1 · K−1
)

α
(

10−6m2 · s−1
)

η0/α
(

m−1
)

T∞(K)

1 57.6 24.78 0.1469 298.2

2 57.8 24.87 0.1621 297.8

3 57.0 24.53 0.1565 298.0

4 57.7 24.83 0.1593 298.3

5 57.9 24.91 0.1559 298.2

6 57.0 24.53 0.1658 298.3

Average 57.5 24.74 0.1578

(gray-body emittance), the convection parameters are h0 = (2.2±0.2) W ·m−2 ·K−1

and h1 = (0.23 ± 0.01) W · m−2 · K−2. It follows from these values that typically
(see Fig. 6) the convective heat-transfer coefficient h = h0 + h1 (T − T∞) varied
from 3.1 W · m−2 · K−1 at the cooler edge of the sample to 5.4 W · m−2 · K−1 at the
heated edge. Notice that a very low velocity was used in the forced flow induced in
the air. For the transient temperature-field measurements (see Table 3), the convection
coefficient is at least h0 = (3.1 ± 0.2) W · m−2 · K−1 (emittance of 1.0), while the
temperature dependence h1 is the same as for the stationary case because of the same
η1/α value. For the gray-body emittance h0 = (4.3 ± 0.2) W · m−2 · K−1.
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6 Discussion

The thermal conductivity of tantalum was determined surprisingly accurately when
the temperature dependence of the effective heat-loss coefficient was incorporated in
the stationary and transient fin models. The related addition of one more parameter
(h1) was necessary as evidenced by the minimum value of the cost function, which
was reduced by 64 % to 88 % compared to that of the linear fin model when the sta-
tionary temperature profiles were analyzed. A similar comparison to the result of the
linear model was also made for one transient measurement (measurement number 6
in Table 3). The minimum of the cost function was 30 % higher when the linear model
was used, and the fitted thermal conductivity was then 58.3 W · m−1 · K−1.

From the stationary temperature measurements on the 0.3 mm thick tantalum sam-
ple, we obtained values for the parameters, η0/α and η1/α. Although the reference
level of the ratio of the effective heat-loss coefficient to the thermal diffusivity, η0/α,
varied slightly between measurements, the slope of its temperature dependence, η1/α,
remained more or less the same as is evident from Fig. 8. That was one of the reasons
to use the stationary-state value for η1/α also when fitting the transient temperature
profiles. We tested the sensitivity of the transient fit to this parameter by optimizing
the measurement number 6 of Table 3 also with η1/α values of 0.0042 m−1 · K−1

and 0.0046 m−1 · K−1, which correspond to the lowest and highest values of this
parameter within the error bars. The optimization results for these η1/α values were
k = 57.025 W ·m−1 ·K−1 and k = 56.925 W ·m−1 ·K−1, respectively. The increment
of the k value was refined to 0.005 W · m−1 · K−1 as the difference between the two
optimal values was small. By comparing to the k value of 56.95 W · m−1 · K−1, which
corresponds to an η1/α value of 0.0044 m−1 · K−1, we can say that the uncertainty of
the thermal conductivity as determined by our optimization is about 0.1 W ·m−1 ·K−1

with respect to the uncertainty in parameter η1/α. The deviations between individ-
ual measurements are thus larger than the uncertainty of the method. Our result k =
(57.5 ± 0.2) W · m−1 · K−1 has a smaller uncertainty than the 5 % uncertainty of the
accepted thermal conductivity value, 57.5 W · m−1 · K−1, for tantalum [7,8].

For the stationary-state data we obtained η0/α = (0.121 ± 0.003) m−1 while
η0/α = (0.158 ± 0.003) m−1 for the transient data. This difference can be explained
by the different thicknesses of the plates. The transient measurements were done
on factor-of-five times thicker sample than for the stationary measurements. Sample
thickness can affect the effective heat-loss coefficient η only through the contribution
of convective heat transfer. The structure of the flow field of air on both sides of the
plate thus seems to depend on sample thickness, causing a thickness dependence also
in the convective heat-transfer coefficient. In our previous studies [5] the difference
between the optimal η/α values of stationary and transient measurements was only of
the order of 1 %, due to the fact that both stationary and transient measurements were
carried out on the same sample. As already discussed above, similar effects on η1/α

are much smaller and can be neglected.
Infrared thermography has also been applied to experimental determination of the

convective heat-transfer coefficient in a few previous studies, see, e.g., Refs. [9,10].
However, to our knowledge the temperature dependence of the coefficient has not been
measured before. With our model, assuming a weak (negligible) temperature depen-
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dence of the heat-diffusion coefficient, it is now possible to determine simultaneously
both the in-plane thermal diffusivity and the temperature-dependent convection coef-
ficient by measuring the temperature profile in a thin planar sample.
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